
SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Design and Code Communication & Code Reviews

/**

* Get the {@linkplain GuessGame game} for the current user.

* The user is identified by a {@linkplain Session browser session}.

*

* @param session

* The HTTP {@link Session}, must not be null

*

* @return

* An existing or new {@link GuessGame}

*

* @throws NullPointerException

* when the session parameter is null

*/

public GuessGame get(final Session session)

Your communication about a project is not just in the form of
presentations and meetings.

▪ The systems that you will develop are complex and have both static and
dynamic design characteristics.

▪ To describe those characteristics, you will use several UML models.
• Domain, class and sequence

▪ Those who must use your implementation need a more productive
description that studying lines of code.

▪ Those who must maintain your implementation must be able to quickly
understand the code.

2

The domain model describes the product owner's understanding
of the application's scope.

▪ Domain model
• Describes the context in which the application will operate.
• Helps developers share the product owner's understanding of this context.
• Describes the product owner's world view of the domain entities and relationships

between them.

▪ The domain model will help developers create a structure for the
implementation to the extent that is possible.

3

Design documentation can be a valuable communication tool.

▪ Design documentation should be short and easy to read.

▪ It should communicate key architecture and design decisions.

▪ It should generally move from high-level to low-level.

▪ It should provide justification for design decisions.

4

A design document is a way for you to communicate to others what your

design decisions are and why your decisions are good decisions.
From How to Write an Effective Design Document by Scott Hackett

http://blog.slickedit.com/2007/05/how-to-write-an-effective-design-document/

The class model defines the static structure of your
implementation.

▪ It captures many constructs embodied in your implementation
• Class attributes and methods with visibilities
• Relationships between classes with multiplicities
• Navigation between classes
• Structure via inheritance/interface
• Architectural tiers

▪ The domain model inspires the first-cut for the implementation class
structure.
• Try to have the software structure match the product owner's domain structure, i.e.

domain entities become implementation classes

5

You also must describe the application's dynamic characteristics to
fully describe its operation.

▪ An application's execution of a feature/operation involves multiple classes
across architectural tiers.
• The sequence diagram indicates which classes and methods are involved in an

execution scenario.
• Formulate a user story solution with one or more sequence diagrams created before

starting the implementation (not required for Sprint 2).

6

Keeping your design documentation up-to-date will now be part of
your standard workflow.

7

How your code "reads" is critically important for the humans who
will read it.

Any fool can write code that a computer can understand. Good programmers write code
that humans can understand.
Refactoring: Improving the Design of Existing Code
Martin Fowler, et. al (1999)

8

▪ Code is read by humans as much as by machines.

▪ Code must be readable and understandable by all team members.

▪ Clear code communication includes:
• A shared code style
• Use of good, meaningful names
• Component APIs are clearly documented
• Algorithms are clarified using in-line comments
• Indication of incomplete or broken code

8

A shared code style is good etiquette.

▪ No code style is inherently better than any other one.

▪ A code style includes:
• Spaces vs tabs
• Where to put curly-braces
• Naming conventions
 CamelCase for class names
 UPPER_CASE for constants
 lowerCamelCase for attribute and method names

• And so on

▪ Every team should choose a style and stick to it.
• IDEs provide support for defining a code style
• If your team cannot choose one then we recommend using Google Java style (see

resources)

9

Make names reflect what they mean and do.

▪ Dos:
• Use names that reflect the purpose
• Use class names from analysis and domain model
• Use method names that are verbs in your analysis
• Use method names that describe what it does not how it does it

▪ Don'ts:
• Don't abbreviate; spell it out
 pricePerUnit is better than pPU or worse just p

• Don't use the same local variable for two purposes; create a new variable with an
appropriate name

• Don't use "not" in a name
 isValid is better than isNotValid.

10

Document your component's API.

▪ In Java the /** … */ syntax is used to denote a documentation for the
thing it precedes.

▪ For example:
/**
* Represents a Hero entity
*
* @author SWEN Faculty
*/
public class Hero

▪ At a minimum you should document all public members.
• Also, good to document all methods including private methods
• Document attributes with complex data structures

11

A method's javadoc must explain how to use the operation.

▪ Every method must have an opening statement that expresses what it does.
• Keep this statement concise
• Additional statements can be added for clarification

▪ Document the method signature
• Use @return to describe what is returned
• Use @param to describe each parameter
• Use @throws to describe every exception explicitly thrown by the method

▪ Link to other classes
• Use @link to link to classes (monospaced formatting)
• Use @linkplain in opening statement (standard formatting)

12

Example method javadocs.

/**
* Responds to the GET request for a {@linkplain Hero hero} for the given id
*
* @param id The id used to locate the {@link Hero hero}
*
* @return The {@link Hero hero} and HTTP status of OK if found
*
* @throws ResponseStatusException (NOT_FOUND) when a {@link Hero hero} with the id
* is not found
* @throws ResponseStatusException (INTERNAL_SERVER_ERROR) if an issue with
* underlying storage
*/

13

Use @linkplain

in the opening

statement.

Use @link in all

other clauses.

Use in-line comments to communicate algorithms and intention.

▪ Use in-line comments to describe an algorithm
• Dos:
 Use pseudo-code steps
 Explain complex data structures

• Don'ts:
 Don't repeat the code in English
count++; // increment the count

▪ Use comments to express issues and intentions
• A TODO comment hints at a future feature
• A FIX (or FIXME) comment points to a known bug that is low priority

14

A code review can improve the quality of the product and the
quality of the team.

▪ Increase product quality
• Identify and fix design or coding violations
• Identify and fix code communication issues
• Analyze test coverage, identify new test scenarios

▪ Increase overall team skill
• Discuss code communication
• Share coding and testing techniques
• Discuss design principles & patterns, as appropriate

15

There are several situations that warrant a code review.

▪ For new members of the team
• Along with reading the Design documentation
• Code review (walk-through) with a senior developer

▪ For Spikes
• To impart lessons from the Spike to the rest of the team

▪ For User Stories
• To improve the quality of the feature code
• To share best practices with the rest of the team
• Even trivial stories should have reviews

16

There are several code review techniques.

▪ Individual
• A senior developer sits with a junior developer
• The review can be focused on a specific problem or for general understanding a

subsystem

▪ Synchronous
• A team meets to review some code
• Usually the most formal process
• Disadvantage of needing to sync schedules

▪ Asynchronous
• A developer uses an online tool to create a review
• Shows the diffs between two branches
• Reviewers make comments in the tool

▪ Hybrid approaches
17

A team will often have a checklist of things to look for during the
code review.

▪ Coding practices
• Code communication
• Defensive programming practices

▪ Design practices
• Adherence to architectural tiers
• Adherence to core OO principles
• Adherence to OO design principles

▪ Testing practices
• Are test suites comprehensive (enough)
• Test code follows good code and design practices

▪ Design documentation
• Is the documentation being kept up-to-date

18

The activity will guide the team through doing an asynchronous
review.

▪ You will create a git pull request for a selected feature branch.

▪ Team members will review the code using GitHub's PR review user interface.
• We'll provide a checklist and document to record your suggested changes
• Team submits the document to a Dropbox

▪ After the changes are approved, the feature branch is merged into master

19

Issuing pull requests and performing code reviews will now be a
part of your development workflow.

20

▪ The Pull Request is made when the story moves to Ready for Test, i.e. after the user
story is code complete, and the design documentation is updated.

▪ Review should be done by a minimum of two team members other than the
developer of the story.

▪ Acceptance testing can be performed in parallel.

	Slide 1
	Slide 2: Your communication about a project is not just in the form of presentations and meetings.
	Slide 3: The domain model describes the product owner's understanding of the application's scope.
	Slide 4: Design documentation can be a valuable communication tool.
	Slide 5: The class model defines the static structure of your implementation.
	Slide 6: You also must describe the application's dynamic characteristics to fully describe its operation.
	Slide 7: Keeping your design documentation up-to-date will now be part of your standard workflow.
	Slide 8: How your code "reads" is critically important for the humans who will read it.
	Slide 9: A shared code style is good etiquette.
	Slide 10: Make names reflect what they mean and do.
	Slide 11: Document your component's API.
	Slide 12: A method's javadoc must explain how to use the operation.
	Slide 13: Example method javadocs.
	Slide 14: Use in-line comments to communicate algorithms and intention.
	Slide 15: A code review can improve the quality of the product and the quality of the team.
	Slide 16: There are several situations that warrant a code review.
	Slide 17: There are several code review techniques.
	Slide 18: A team will often have a checklist of things to look for during the code review.
	Slide 19: The activity will guide the team through doing an asynchronous review.
	Slide 20: Issuing pull requests and performing code reviews will now be a part of your development workflow.

